Blog

Recycling and...China?

Posted by Chandler Slavin on Oct 16, 2012 11:02:00 AM

Hello my packaging and sustainability friends! I am feeling tip top today after having a four-day hiatus from work: I slept, I swam, I sunbathed, I ate…good times. I hope you all had an equally relaxing Memorial Day weekend, too!

AND know what’s even weirder—I actually missed work. That’s right, I missed the act of being productive…go figure!

So my last post was a little all over the place. I do believe, however, that this article may tie it all together, which then gets me on another rant of sorts. First, observe:??

NAPCOR: US efforts to recycle falling short

By Mike Verespej | PLASTICS NEWS STAFF

Posted May 28, 2010

SONOMA, CALIF. (May 28, 10:45 a.m. ET) -- Longtime plastics recycling advocate Dennis Sabourin said “bold steps” are needed to increase supplies of not just recycled PET bottles but all plastics and recycling materials.

The executive director of the National Association for PET Container Resources in Sonoma, Calif., and a former Wellman Inc. executive said it is time for extended producer-responsibility laws and eco-fees on products. Also needed are public-policy initiatives that provide funds for recyclers to create green jobs and for stakeholders to come together, in coalition-style, to advance the recycling of all materials.

Even with the green movement, Sabourin said, “recycling is still not a front-burner issue,” as it was in 1995, when the PET recycling rate climbed to nearly 40 percent. That rate plummeted to less than 20 percent by 2003 before rebounding in 2008 to 27 percent — based on the most recent numbers available.

?“Why not have a national initiative to divert some of the stimulus funds to recycling on a broad-based effort?” he asked. “That would create jobs in the United States.”

He called initiatives introduced by Vermont and Rhode Island, and the extended producer-responsibility law passed by Maine earlier this year, steps in the right direction. “They will not give us any immediate relief from a supply standpoint, but EPR will bear fruit down the road,” he said, noting that an EPR law in Canada has given recycling rates there a huge boost. Canada’s return/diversion rate for non-alcoholic beverage containers is 64 percent.

He said the biggest obstacle to more recycling is the lack of a concerted public policy to motivate consumers to recycle, a move that would create jobs.

?“There are plenty of materials out there and plenty of markets for those materials. We have to reach out and start working together to get more materials collected,” he said.

For the full article, visit http://www.plasticsnews.com/headlines2.html?id=18730&channel=260.

This article was referred to me by my co-lead of the PET subcommittee for Walmart-Canada because it illustrates the infrastructural differences between recycling in America and recycling in Canada, where I am now focusing a lot of my research/work.

ANYWAY, what I am trying to imply between my last post and Sabourin’s argument (that some sort of legislation must be put on the books that REQUIRES industry/municipalities to meet recycling targets in order to increase the diversion rates in the States), is, touch?! I believe that until there are some extended producer responsibility requirements implemented in the States that forces industry and municipalities to work together to divert more materials from the landfill, my recycling initiative will continue to be just that—an initiative, with little sight of implementation.

While there are some positive signs like retailers advocating post-consumer content in products and packages or recycling drop-off centers (think Whole Foods), I see little improvement across-the-board in regard to the amount of materials recycled in America until EPR legislation is implemented. As mentioned here and again throughout my blog, we need: SUPPLY, which we don’t have because no one is collecting it or they don’t wish to compete with China for purchasing post industrial/consumer scrap; DEMAND, which we don’t have with the crash of the economy, although this is changing as CPG companies look for quality streams of post-consumer plastics; and, INVESTMENT, which we defiantly don’t have because it has not been an economic priority (why worry about recycling plastics when the cost of virgin resins is so low?!?).

BUT then enter EPR, which requires producers i.e. brand owners, first importers, product manufactures (those responsible for putting the product/package on the shelf) to FUND the recovery of their product’s packaging waste post-consumer. Then all of a sudden organizations like Fost Plus in Belguim or Stewardship Ontario in Canada develop to help manage the money transfer from industry to municipalities and viola, the recovery rates of packaging—all packaging—would increase. I am sure it’s not that easy but you get the gist…

Anyway, I wished to include this argument in our June Newsletter (we send out newsletters each month updating all our contacts in regard to what is new at Dordan and what is new in the industry), but was met with some hesitation from some of the more “business-minded” folk at Dordan. According to these colleagues, EPR legislation would probably not do well by domestic manufactures because all of a sudden, our packages would become more expensive (or the product would become more expensive, or the cost to manage the waste would be pushed throughout the supply chain) than those produced overseas in say, China, where they have no EPR legislation on the books. But the first importers would be required to pay for managing Chinese packaging waste post-consumer, right? If so, would that provide an incentive to source packaging domestically? Now I’m confused.

SOOOOO our CEO called me into his office to discuss EPR and its implications into our business because I wanted to highlight this article in our June newsletter, and he wanted to ensure that we were not shooting ourselves. What he basically said, like any good American dream manifestation, is: why is our industry being targeted as irresponsible with our waste while CPG companies source TONS of products and packages from overseas, where little environmental and labor regulations exist? In a nut shell: What are the ethics of being “environmentally friendly” in the context of sourcing international manufacturing?

AND enter new research project: I am now going to be researching all that is Chinese manufacturing to come up with an argument that highlights the contradictions between trying to be “green” and sourcing manufacturing overseas.

I sent one of my former professors the following email, which marks the beginning of my research journey:

Hello!

This is Chandler Slavin—I graduate last spring from the Religious Studies Department and took your class on inter-faith engagement (I had the Turkish versus Greek debate) my senior year. Remember?

I hope this email finds you well.

I was wondering if you could help me with something: I work for my family business, which is a domestic manufacturer of plastic packaging for the consumer electronics industry. I am the Sustainability Coordinator, which means I research issues pertaining to sustainability and packaging in order to stay ahead of the curve and market ourselves as a “green” manufacturer. In our industry, there is a lot of concern over the “sustainability” of a product or package and many retailers have invested considerable amounts of time and money into trying to “green up” their image by switching packaging materials, having recycling drop-off centers, and labeling various products as “environmentally friendly.”

Anyway, often times we sell packaging based on discussions of sustainability. However, our biggest competitor isn’t other green plastics manufacturers but Chinese manufacturers, who can sell packages at a much lower cost into our economy, while we are unable to sell our packages into their economy without paying some sort of tax or entering some kind of agreement with the Chinese government.

Our CEO wants me to research this contradiction:

While American product producers are being pressured to green up their products/packages (I have been working on a recycling initiative for months now) or dispose of products/packages responsibly (its called “extended producer responsibility” and CA has some of these laws on the books in regard to managing electronic waste), many American product producers i.e. brand owners, are sourcing the manufacturing of their product and package overseas, where lax environmental regulations and labor laws allow for unsustainable production profiles and cheap products. Basically, when everyone in our industry is obsessing about the sustainability of a package (market research shows that consumers are more likely to buy products labeled as “green”), we are constantly competing with overseas manufacturers, who have absolutely no environmental or social platform in the context of “sustainability.”

Wow, that’s a lot. Because you work on environmental policy I was wondering what you knew about Chinese economic and social development in the context of the environment. If willing, could I come visit you and perhaps you could point me in the right direction? Seriously, any insight you could provide would be very well received. Think of it as the ethics of green marketing vs. overseas manufacturing…sounds intriguing, no?

Thanks for your time!

Best,

Chandler Slavin

Tune in tomorrow for more goodness!

Read More

All sorts of stuff

Posted by Chandler Slavin on Oct 16, 2012 11:01:00 AM

For those of you who have been following my blog, you are aware that our clamshell recycling initiative has sort of come to a stand still:

We determined why PET thermoforms are not recycled (lack of investment in the infrastructure due to quantity, quality, supply and demand issues) and the problems with including RPET thermoforms in PET bottle bales (different IVs, melting points, fear of contamination, etc.) While we did determine that our RPET clams and PET bottles are “read” the same via an optical sorter, when the mixed bales of RPET thermos and PET bottles make it to the processor, the thermos are thrown out and not recycled along with the PET bottles.

Consider the following article published in PlasticsNews, which does an amazing job summarizing all my research to date:

NAPCOR puts thermoformed PET on docket

By Mike Verespej

Posted May 24, 2010

Although blow molded PET and high density polyethylene bottles get most of the plastics recycling attention, a potentially large market looms on the horizon, presenting an opportunity and a challenge for the recycling industry — thermoformed PET containers.

In 2008, 1.4 billion pounds of thermoformed PET packaging was produced in the U.S and Canada. But by 2011, that market could grow to be one-half the size of the PET bottle market, which is the largest category of recycled plastic resin, said Mike Schedler, technical director for the National Association for PET Container Resources in Sonoma, Calif.

“The market is growing rapidly because of natural growth and conversion of products from polystyrene and PVC,” said NAPCOR’s Schedler.

But growth in thermoformed PET packaging and pent-up demand for recycled PET in those packages doesn’t automatically translate into a waste stream that can be turned into an end-market opportunity, he said. “The market is not the issue. The issue is moving it through the reclamation system.”

For the past 18 months, NAPCOR’s Thermoforming Council has been working with recyclers and material recovery facilities in the U.S. and Canada to address an array of technical issues, as well as difficulties presented by a huge variety of sizes and shapes of clamshells, boxes, trays, cups and lids.

Schedler said the council has three main objectives in regard to thermoformed PET.

“We have to remove the obstacles and create an infrastructure that will give PET thermoformed packages the same recycling opportunities as PET bottles,” he said. “And we have to do it in a way that is acceptable to existing collection systems and processes, and without jeopardizing the PET bottle recycling stream.”

Last, he said, “We have to support PET packages and do the things we did in the late 1980s to facilitate recycling of PET bottles.”

The council also is conducting a thermoformed packaging compatibility study to evaluate different streams of packaging and how well they meet industry protocols for fiber, sheet and bottles applications that have been developed by the Washington-based Association of Postconsumer Plastic Recyclers.

Specifically, the study is looking at dedicated thermoformed packaging bales manually removed from MRFs without auto-sort capabilities, mixed bales of PET bottles and PET thermoformed packages at MRFs with auto-sorting equipment, and mixed rigid plastic bales.

“We will convey that data and our observations to PET reclaimers,” Schedler said.

A fourth possible stream — cups from arenas and stadiums with PET recycling programs — will be addressed later.

“I could see separate recycling programs within stadiums for cups, and, to a certain degree, clamshells,” he said. “But I don’t see that happening at MRFs with auto-sort equipment.”

The industry is working to overcome technical hurdles that currently keep thermoformed PET packages from being recycled in tandem with bottles. Among them:

* Look-alike plastics like oriented polystyrene, polylactic acid and PVC containers that are difficult to sort from thermoformed PET packaging, either manually or in auto-sorting operations.

* Adhesives used on pressure-sensitive paper labels are different from those used on PET bottles and could cause yellowing.

* Some direct printing.

* Different additives than in PET bottles.

* Flake geometry concerns.

* Wide variability in intrinsic viscosity.

“We understand what it takes to do this work and we are rolling up our sleeves to do it,” Schedler said. “We want to make PET thermoformed packaging recycling a reality and to position PET as the environmentally preferred package of choice.”

Copyright 2010 Crain Communications Inc. All Rights Reserved.

In my last post, I discussed a company that is going to buy balled PET bottles and PET/RPET thermoforms from MRFs for reprocessing into the next generation of thermoforms. While I obviously have some questions and concerns in regard to the logistics of this approach, I feel like this is a step in the right direction. However, I feel that for Dordan, and the plastics industry in general, it is important to work on the residential recycling infrastructure level, as that is what the consumer has access to and informs his/her understanding of the “sustainability” of a given material. That being said, while a closed-loop system is awesome and a direction we would like to move, I will be focusing more on integrating our packages into the American recycling infrastructure in general because I really think that would resonate with consumers and the larger public. Additionally, the work I am doing with Walmart-Canada works on the residential level, as opposed to the closed-loop system level. If they can figure out a way to recycle PET thermoforms with or in addition to PET bottles, then hopefully, so can we.

Today I had a phone interview with a contact from StewardEdge, which is an organization in Canada that has their hands in issues pertaining to extended producer responsibility. This contact, however, works with Stewardship Ontario to develop markets for plastic post consumer. Our conversation today ROCKED because not only did he confirm my understanding of recycling, but he provided validation that our approach is one of relevance and that our goals are represented by our Canadian neighbors. So I am not alone after all, hurray!

Anyway, he explained that unlike the States, that which is driving recycling in Canada is Stewardship Ontario, which is an organization like Fost Plus in Belguim, which takes money from industry to manage the cost of said industry’s packaging waste. In other words, because there is legislation on the books in Canada that REQUIRES producers to fund the recovery of their packaging post-consumer, organizations like Fost Plus in Belgium and Stewardship Ontario in Canada developed to help producers meet said requirements.

Let me back up. In 2002 Canada’s Waste Diversion Act mandated that industry has to pay for 50% of the net cost for municipalities to run their Blue Box program. The Blue Box program is similar to curb side recycling in the States; however, they encourage the recycling of a lot more materials than is encouraged in the States.

The “designated” material types accepted for recycling via the Blue Box Program are listed here:? http://www.stewardshipontario.ca/bluebox/pdf/materialcategories.pdf.

Anyway, Stewardship Ontario was set up specifically to collect that money from industry and give it to the municipalities to manage packaging waste.

There are different fees for different materials, depending on the ease of recovering said material post-consumer. In other words, the harder a package is to recycle or recover, the higher the associated fee will be.

The fees change every year; here’s the latest: http://www.stewardshipontario.ca/bluebox/fees/fees_rates.htm.

For example, if you sold a polystyrene container into the Canadian market, you would be required to pay 24.65 cents per kg. These are real costs that affect the entire supply chain. PS is expensive because it is so lightweight (EPS is 98% air, 2% resin) there is no economical way to collect it for reprossessing (think shipping…); that is why EPS is one of the materials of focus for the MOC, because economically it is impossible to recycle…

Wow have I rambled. Sorry for the all over nature of this post; I have a point, I swear!

Tune in Tuesday (sisters taking a vacation!!!) to figure out where I am going with this and what needs to happen in the States to integrate thermoforms into the existing recycling infrastructure.

Tootles!

Read More

Happy Monday Funday!

Posted by Chandler Slavin on Oct 16, 2012 11:00:00 AM

Happy Monday Funday!

The company that I made the “Sustainability and Packaging” presentation for, which I posted to my blog on Friday, sent me the following email after receiving said powerpoint (I sent it early for confirmation of its content):

“180 slides is way too long, even for a medical convention…”

Ha!

How do you provide an “overview of sustainability” in 60 slides, which is what this company suggested? I guess I am just as dilligent a powerpointer as I was a student; I was one of the special few who had to speak with my professors about exceeding the page limits for term papers—old habits die hard…

Anyway, tomorrow’s the day: My big presentation for a giant company on all things “Sustainable.” I am going to wear my new power business suit and fab heels AND I took my face piercing out several weeks ago so I look totally business-like.

For today’s post I thought I would reflect on a recent happening in our industry, which was convered on greenerpackage.com, PlasticsNews, and other misc. packaging publications. Because the company in question is a competitor, my superior was hesitant about me articulating my questions in a public forum i.e. on greenerpackage.com. Therefore, I decided to address this tid bit in my blog as it is not an in-your-face forum because I totally respect this company and the work they are doing in sustainability.

Consequentially, all reference to this company has been removed so as not to ruffle anyone’s tail feathers.

Here is the article:

Company X? has announced that it will construct a closed-loop recycling facility in Somewhere America to grind and wash post-consumer bottles and thermoforms for processing into its namebrand sheet products. The company says it is reducing the total carbon footprint of its product by bringing the material supply chain closer to production and offering its customers more choices of materials, including up to 100% post-consumer content PET.

?“We’re excited to bring bottle cleaning and sheet production together in a continuous process loop,” says company CEO. “Our factory design will streamline operations while delivering the recycled sheet products the market requires.”

Company X notes that it is among the first thermoforming companies in the food and consumer packaging industry to implement its own in-house recycling. With the new facility, the company will receive curbside-collected bottles to clean, grind, and extrude into sheet. Reducing the number of bottles going to landfills while providing high-quality material for customers has long been a goal for the company. Company X has been using recycled content in its packaging for more than 15 years, and over the last seven, it has diverted more than 1 billion discarded bottles from landfills.

While Company X has extruded sheet for internal use for 20 years, this marks the first time it will sell its namebrand sheet on the open market.

In addition to namebrand post-consumer rPET, the facility will produce LNO (letter of non-object) flake, allowing food contact with recycled material. Company X? has also commercialized an RF-sealable rPET grade of material to address customers’ bar sealing requirements for PET. Company X says that with only minor process adjustments, this material is a direct replacement for PVC sealing applications.

The recycling facility will be completed in two phases. In phase one, Company X will be adding an additional extruder for its namebrand rollstock. This will be completed in the third quarter of 2010. Phase two will be the addition of the bottle washing equipment, which is scheduled to be operational in the first quarter of 2011, with plans for additional extruders to follow.

Company X’s CEO said that integrating the bottle washing and grinding makes sense, given the amount of post-consumer material the company uses. With the completion of the in-house recycling facility, the firm will be able to streamline the recycling process to ensure that raw material meets Company X’s high standards.

Seeing as how I have been trying to figure out a way to integrate our RPET thermoforms into the existing PET bottle recycling infrastructure, I have A TON of questions for Company X.?

If any of you fine packaging and sustainability friends have any insight, please don’t hesitate to share!!! Sharing is caring!
    • What are the specs of the bales of thermoforms Company X is buying from the MRF?
    • Are they only PET thermoforms or are they mixed material thermoform bales?
    • If only PET thermoforms, is there enough QUANTITY of these types of packages available for the recovery of PET thermoforms to be economically sustainable?
    • How do they collect ONLY PET thermoforms without collecting “look a likes” like PVC, which will completely compromise the integrity of the PET bale, or PETG, which has a lower melting temperature and therefore adds inconsistencies to the recovery process?
    • Are you planning on integrating the PET thermoform scrap with the PET bottle scrap and extruding together? If so, how will you handle the different IVs between sheet grade PET and bottle grade PET?
    • If buying mixed material thermoform bales from the MRF i.e. PET, PETG, PP, etc., how are the different resins sorted for recovery? Are they blended together to create a low-grade, mixed resin flake for down-cycling applications? If so, who is buying this low-grade, mixed resin flake?
    • What kind of sorting technology is utilized to be able to generate a clean, quality stream of PET thermoforms for Company X to grind, clean, and extrude for direct food-contact packaging?
    • How are you competing with Asia for PCR PET?
While I am tickled pink that Company X is recovering thermoforms post-consumer in a closed-loop system, I don’t know how they are doing it! Perhaps the point, no?

That’s all for now; wish me luck tomorrow on my presentation!

Read More

Holly Toledo!

Posted by Chandler Slavin on Oct 16, 2012 10:59:00 AM

Happy Friday!

So I have been working on a presentation on everything sustainability for one of Dordan's customers. Sustainability and Packaging 101, per se.

Anywoo, it took me two days and 190 slides to finish, but I am FINALLY DONE!

It's jam packed with good stuff--basically a summary of all my work to date--so check it out!

Sustainability and Packaging Presentation, Blog

Enjoy the heat-wave this weekend, my fellow Chicagoians!

Also, please do not reproduce or distribute without my written consent. Thanks!

Read More

Bio-based resin report!

Posted by Chandler Slavin on Oct 16, 2012 10:58:00 AM

Hello world! Today is officially the most beautiful day—the sun is shining and the weather is sweet. If I only I weren’t stuck in a cubicle…

Soooooo because I have had so many of Dordan's customers ask us about bio-based resins, I decided to compile a brief report, which details the various environmental ramifications one must consider when discussing bio-based plastics. Soon this report will be accessible on our website but because you are all so special, I have attached it below here. A sneak peak, per se. Wow I am a nerd.

Enjoy!

Bio-Based Resins: Environmental Considerations

Biodegradability is an end of life option that allows one to harness the power of microorganisms present in a selected disposal environment to completely remove plastic products designed for biodegradability from the environmental compartment via the microbial food chain in a timely, safe, and efficacious manner.[1]

Designing plastics that can be completely consumed by microorganisms present in the disposal environment in a short time frame can be a safe and environmentally responsible approach for the end-of-life management of single use, disposable packaging.[2] That being said, when considering any bio-based resin, there are some environmental considerations one must take into account. These include: end-of-life management; complete biodegradation,; its agriculturally-based feedstock; and, the energy required and the greenhouse gasses emitted during production.??

Before I expand on these concepts below, let us quickly discuss the biological processes that degradable plastics endure during biodegradation.

Microorganisms utilize carbon product to extract chemical energy for their life processes. They do so by:
    1. Breaking the material (carbohydrates, carbon product) into small molecules by secreting enzymes or the environment does it.
    2. Transporting the small molecules inside the microorganisms cell.
    3. Oxidizing the small molecules (again inside the cell) to CO2 and water, and releasing energy that is utilized by the microorganism for its life processes in a complex biochemical process involving participation of three metabolically interrelated processes. [3]
If bio-based plastic packaging harnesses microbes to completely utilize the carbon substrate and remove it from the environmental compartment, entering into the microbial food chain, then biodegradability is a good end of life option for single use disposable packaging.

End-of-life management considerations:

Because biodegradation is an end of life option that harnesses microorganisms present in the selected disposal environment, one must clearly identify the ‘disposal environment’ when discussing the biodegradability of a bio-based resin: examples include biodegradability under composting conditions, under soil conditions, under anaerobic conditions (anaerobic digestors, landfills), or marine conditions. Most bio-based resins used in packaging applications are designed to biodegrade in an industrial composting facility and one should require some type of certification or standard from material suppliers, ensuring compostability.

Unfortunately, little research has been done on how many industrial composting facilities exist in the United States and how bio-based plastic packaging impacts the integrity of the compost. However, the Sustainable Packaging Coalition did perform a survey of 40 composting facilities in the U.S., which provides some insight. According to their research, 36 of the 40 facilities surveyed accept compostable packaging. These facilities reported no negative impact of including bio-based plastic packaging in the compost. Of the 4 facilities that do not accept compostable packaging, 3 are taking certain packaging on a pilot basis and are considering accepting compostable packaging in the future. Of the facilities surveyed, 67.5% require some kind of certification of compostability i.e. ASTM, BPI, etc.

In addition, because value for composters is found in organic waste, I assume most facilities would not accept bio-based plastic packaging for non-food applications because the lack of associated food waste and therefore value. In other words, as Susan Thoman of Cedar Grove Composting articulated in her presentation at the spring SPC meeting, composters only want compostable food packaging because the associated food waste adds value to the compost whereas the compostable packaging has no value, positive or negative, to the integrity of the compost product.?

It is also important to note that because there are so few industrial composting facilities available, the likelihood that your bio-based plastic packaging will find its way to its intended end of life management environment is rare. While the idea of biodegradation and compostability for plastic packaging may resonate with consumers, the industrial composting infrastructure is in its infancy and requires a considerable amount of investment in order to develop to the point where it would be an effective and economical option to manage plastic packaging waste post consumer.

Complete biodegradability considerations:

A number of polymers in the market are designed to degradable i.e. they fragment into smaller pieces and may degrade to residues invisible to the naked eye. While it is assumed that the breakdown products will eventually biodegrade there is no data to document complete biodegradability within a reasonably short time period (e.g. a single growing season/one year). Hence hydrophobic, high surface area plastic residues may migrate into water and other compartments of the ecosystem.[4]

In a recent Science article Thompson et al. (2004) reported that plastic debris around the globe can erode (degrade) away and end up as microscopic granular or fiber-like fragments, and these fragments have been steadily accumulating in the oceans. Their experiments show that marine animals consume microscopic bits of plastic, as seen in the digestive tract of an amphipod.

The Algalita Marine Research Foundation[5] report that degraded plastic residues can attract and hold hydrophobic elements like PCB and DDT up to one million times background levels. The PCB’s and DDT’s are at background levels in soil and diluted our so as to not pose significant risk. However, degradable plastic residues with these high surface areas concentrate these chemicals, resulting in a toxic legacy in a form that may pose risks to the environment.

Therefore, designing degradable plastics without ensuring that the degraded fragments are completely assimilated by the microbial populations in the disposal infrastructure in a short time period has the potential to harm the environment more that if it was not made to degrade.

Agriculturally-based feedstock considerations:

Most commercially available bio-based resins are produced from sugar or starch derived from food crops such as corn and sugarcane.[6]Over the past few years, the use of food crops to produce biofuels has become highly controversial; the same may happen with bio-based resins. However, this is only if the scale of bio-based polymer production grows. According to Telles VP Findlen, “If the bioplastics industry grows to be 10% of the traditional plastics industry, then around 100 billion pounds of starch will be necessary, and there is no question that that will have an effect on agricultural commodities.”[7]

This sentiment is echoed by Jason Clay of the World Wild Life Fund. Because sugar is the most productive food crop[8] Clay explained, it makes an ideal feedstock for bio-based resin production; however, if all Bio-PE and Bio-PET came from sugarcane, we would need 2.5 times as much land in sugarcane. Unfortunately, this can not be done sustainably because, according to the Living Planet Report,[9] our current demand for the Earth’s resources is 1.25 times what the planet can sustain.[10] Put another way, on September 25th of this year our resource use surpassed what is sustainable. What this would mean as a financial issue is that we are living off our principle.[11]

Therefore, when considering bio-based resins, one should take into consideration the feedstock from which it is derived and the various environmental requirements that go into procuring said feedstock. While the current production of bio-based resins is not to scale to compete with sugarcane production for food, it is important to understand the environmental and social ramifications of sourcing materials from agriculturally based products.

Energy requirements and fossil fuel consumption of production:

Obviously sourcing plastics from bio-based resources as opposed to fossil fuel is an intriguing option for those looking to reduce the burden of packaging on the environment. However, if the energy required to produce bio-based plastics exceeds the energy consumed in the production of traditional resins, then the sustainability profile of bio-based plastics can be compromised.

When bio-based plastics first became commercially available, the processing technologies were not developed to the point where producing plastics from bio-based sources consumed less energy than producing traditional, fossil-fuel based plastics. However, the bio plastics industry has dramatically evolved and is now able to produce certain bio-based resins with less energy when compared with traditional resins. Natureworks Ingeo PLA (2005), for instance, is processed in such a way that it actually consumes less energy and emits fewer greenhouse gas equivalents during production when compared with traditional, fossil-fuel based resins.[12]

The Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany, conducted the head-to-head lifecycle comparison on more than 40 different combinations of clamshell packaging made from Ingeo PLA, PET and rPET. Both PLA and rPET clamshells outperformed PET packaging in terms of lower overall greenhouse gas emissions and lower overall energy consumed and PLA exceeded rPET in its environmental performance.

According to the study, clamshell packaging consisting of 100 percent rPET emitted 62.7 kilograms of C02 equivalents per 1,000 clamshells over its complete life cycle. PLA clamshells emitted even less, with 61.7 kilograms C02 equivalents per 1,000 clamshells. Energy consumed over the lifecycle for 100 percent rPET clamshells was 0.88 GJ. This compared to o.72 GJ for the Ingeo 2005 resin, which is an 18% reduction in energy consumed.

Taken together, one would assume that the 2005 Ingeo PLA is a more sustainable option than traditional plastics, as manifest through this study. However, it is important to take into account the other dimensions discussed above, such as end of life management, complete biodegradation, and sustainable sourcing. By understanding the advantages and disadvantages of bio-based resins from an environmental perspective, packaging professionals can make informed material selections and truly comprehend the ecological ramifications of their packaging selections and designs.


[1] Ramani Narayan, “Biodegradability…” Bioplastics Magazine, Jan. 2009. Narayan is a professor from the Department of Chemical Engineering and Materials Science at Michigan State University.

[2] Ibid.

[3] Ibid.

[4] Ibid.

[5] See www.algalita.org/pelagic_plastic.html.

[6] Jon Evans, “Bioplastics get Growing,” Plastics Engineering, Feb. 2010, www.4spe.org, p. 19.

[7] Ibid, p. 19.

[8] 1-2 orders of magnitude more calories per ha than any other food crop. Information taken from Jason Clay’s presentation, “Biomaterial Procurement: Selected Resources,” at the Sustainable Packaging Coalition’s spring meeting in Boston.

[9] The Living Plant Report is a biannual analysis of the carrying capacity of the globe compared with resource consumption: Population x consumption > planet.

[10] Clay, SPC spring meeting presentation.

[11] Ibid.

[12] M. Patel, R.Narayan in Natural Fibers, Biopolymers and Biocomposites.

Read More

Day 33: Dec. 11th, 2009

Posted by Chandler Slavin on Oct 16, 2012 10:57:00 AM

The next day I arrived to the office to find the following email that confirmed the results of our RPET samples’ test, which I had verbally received from another WM contact the day before:

Hi Chandler,

After speaking with our plant manager in Grayslake, PET clam shells should be recoverable from the recycling stream via optical and manual sorts. I can't say that's the case at all WM recycling facilities, or non- WM competitive facilities, so take that for what it's worth :). The material would end up in our PET bales.

However, that does not mean that the PET blister packs are the "same" as bottle grade PET bottles… as I understand it, the PET bottles have an IV rating of 0.78-0.80, or a "high rigidity," that bottle makers require. I do not know what UV rating your blister packs have, so I would recommend you discuss the technical aspects of your products with your engineers and your suppliers to determine the IV rating and other compatibility issues.

The main issue at this point, based on my research and discussions internally here at WM, is that any non-bottle PET that gets into a bale is typically discarded for landfill upon receipt at a PET bottler, even if a collection and processing company like WM can sort the PET blister packs from the recycling stream. Again, perhaps you can confirm or research this further with your suppliers.

I hope this helps! Good luck with your project. 

Hmmmmmm…

I then sent our head engineer the following inquiry:

Hey,

Do you have any idea what the “IV” of our supplier’s RPET is?

Thanks!

Chan

After a delectable lunch of an Italian beef with sweet peppers, I returned to find the following:

Spec for supplier’s RPET is IV>= 0.65; I believe it’s typically between 0.70 and 0.75.

Hope this helps.

I then checked the email from WM… “PET bottles have an IV rating of 0.78-0.80, or a ‘high rigidity’…”

Well, that’s not too terribly different than our 0.75 IV…now I am confused.

Tune in tomorrow to learn more about recycling in America!

AND check out this website that my contact from the APR suggested to find buyers of post-consumer plastic scrap: http://www.plasticsmarkets.org/. I just found it so I will let you know what I can find out in regard to who buys bales of thermoforms post-conumser. YIPEEEEEEEEEEEE.

Read More

Bottle Box

Posted by Chandler Slavin on Oct 16, 2012 10:56:00 AM

This is awsome and all I want to say for today:

http://www.youtube.com/watch?v=WRPYccEXt-8

This company is super cool--they buy baled PET bottles and clean, grind, flake and extrude the material into RPET clamshells.

I am making a giant graph of all my research on recycling so get excited!

Tootles!

Read More

Day 32: Dec. 10th, 2009

Posted by Chandler Slavin on Oct 16, 2012 10:56:00 AM

Ok, so I think I have dragged out the inevitable long enough. And resume recycling narrative:

Ring…Ring…

“Good Morning Dordan this is Sarah how can I help you? One moment please…”

Beep. “Chandler, Waste Management on Line 1…”

“Thanks.”

Suddenly I realized that this was the call I had been waiting on for almost 7 weeks: the results of our RPET clamshell samples’ test via the MRFs optical sorter. If our supplier-certified 70% post-consumer regrind PET clamshell packages are “read” like PET bottles via the recovery facility’s optical sorter, then perhaps we could integrate our clamshells into the existing PET bottle recycling infrastructure. If anything, the results would tell us if one of the many obstacles facing the inclusion of PET/RPET clamshells into the PET bottle recovery stream is NOT the inability to sort these two packaging types together.

I reach for the phone.

“Hello?”

“Hey Chandler!”

“Hey, nice to hear from you; how’s it going?”

“Great, thanks. I have the results from the MRF regarding your samples.”

“Ok, what are they; did they pass with the bottles?”

“Yes, there was no difference between the PET bottles and RPET samples as read by our optical sorter. So if RPET clams and PET bottles were moving down the line together, there would be no luminescent difference between the bottles and clams as they moved through our plastic sorting station. Again, the main point of the optical sorter is to see the difference between PVC and PET bottles, which look dramatically different when viewed via the optical sorter.”

“This is wonderful news!”

“Well, keep in mind that regardless of this, buyers of baled PET bottles DO NOT want clams in the mix.”

“And this is because fear of contamination, different IVs and perhaps melting points, no specs for mixed bales and on and on…?”

“Pretty much hit the nail on the head.”

“Well, I really appreciate you and WM going out of your way to help us figure this stuff out. We just want to recycle our packages—didn’t know how complicated it is!”

“Well we wish you the best of luck with your recycling initiative. Please let us know if there is anything else we can do for you…”

“Truly, thanks again.”

“No problem; take care.”

“You too!”

I hung up the phone.

Hmmmmmmmmmmmmm…what does this mean, I asked myself?

I think it means that the molecular structures of clamshell RPET and bottle PET are the same, at least was read via the optical sorter.

So how will this help us recycle our RPET thermoforms?

It illustrates that the reason RPET clams are not recycled with bottles has nothing to do with an inability to sort the two packaging types together. So if our RPET clams and PET bottles are read the same, they could be collected and baled, with no need for different sorting technology.

Good to establish, Chandler.

Suddenly I snapped out of my internal discussion; my two colleagues were waiting tentatively outside my cubicle, eager for the results.

“They passed!” I said.

“Sweet!” they replied in unison.

“So what does this mean for us?”

“Haha, I’m not quite sure yet…”

Tune in Monday for a summary of the different obstacles hindering the inclusion of RPET clams in the PET bottle recovery stream. Once established we will move on to discuss how the following determine the recyclability of a material/packaging type: supply, demand, and technology.

Have a splendid weekend! Its Friday, woop woop!

Read More

It's GO TIME

Posted by Chandler Slavin on Oct 16, 2012 10:55:00 AM

Happy Monday Funday! This post is to inform all of my packaging and sustainability friends that tomorrow is GO TIME! I have totally gotten my ducks in a row and can resume my clamshell recycling initiative narrative first thing in the morning. Get excited because I will finally release the results of our RPET samples’ test via the optical sorter (are they “read” like bottle-grade PET) AND bring you up to speed about why the results of this test are, unfortunately, another bread crumb, and not the end-all-be-all that I had hoped for at the onset of our recycling initiative.

WOHOOOOOOOOOOOOOO!

Read More

Guess what!

Posted by Chandler Slavin on Oct 16, 2012 10:55:00 AM

Hello world!

UG don't hate me for my failure to post AGAIN; it has been a heck of a day!

But guess what: I have been invited to assist a major retailer in their attempts to achieve zero waste for PET packaging, both thermoforms and bottles! But not only assist; be a CO-LEADER! I will be a research junky, therefore, as I hope to compile abstracts for the other co-leader and committee members to summarize my research over the past 6 months. And what that means to YOU my fellow blog readers is that I will be extra awesome with blogging because it has become a priority, again.

As I am sure some of my more diligent followers are aware, my blogging ebbs and flows with my existing work load AND the perceived value of continuing to investigate the logistics and economics governing the recycling of clamshells. Because of this recently ignited interest in my work on recycling PET thermoforms, I have been given the green light to (again) delve into researching waste management and recycling in America. YIPEEEEEE! I don’t think I would make a very good Sales woman anyway…J Work from home, here I come!

So tomorrow I will, and I promise, present the results of our RPET samples’ test and discuss how to move this initiative forward. If Canada can do it, so can we!

See you soon my packaging and sustainability friends!

Read More

SUBSCRIBE TO OUR BLOG:

LATEST POSTS: